

ELIZADE UNIVERSITY

ILARA-MOKIN

FACULTY: BASIC AND APPLIED SCIENCES

DEPARTMENT: MATHEMATICS AND COMPUTER SCIENCE

1st SEMESTER EXAMINATION

2017 / 2018 ACADEMIC SESSION

COURSE CODE: MTH 201

COURSE TITLE: Mathematical Methods I

COURSE LEADER(s): Dr. I. A. Olopade & Mrs. T. Akinwumi

DURATION: 2 Hours

HOD's SIGNATURE

INSTRUCTION:

Candidates should answer any FOUR Questions.

Students are warned that possession of any unauthorized materials in an examination is a serious offence.

- 1(a) Define the following:
 - (i) Composite function (ii) Periodic function (iii) Even and Odd functions (6 Marks)
- (b) (i) Evaluate $\lim_{x\to 4} \frac{x^2-16}{x-4}$ (3 Marks)
 - (ii) When is a function said to be continuous? (3 Marks)

 Hence investigate the continuity of this function

$$f(x) = \frac{x^3 - 8}{x^2 - 4}$$
 ; $x \neq 2$, $f(2) = 3$; $x = 2$ (3Marks)

- c) Verify the mean value theorem for $f(x) = 2x^2 7x + 20$, a = 1, b = 6 (5Marks)
- 2 a) Show that the equation $(2xy^2 + 3y\cos 3x)dx + (2x^2y + \sin 3x)dy = 0$ is exact.

(4Marks)

Hence find the equation $\Phi(x,y)$ which is the exact form of the equation. (7Marks)

- b) Differentiate $y = sin^2 6x^2$ (5Marks)
- c) If $x^4y + 3 + 2y = xy^4 4x^2$ find y' (4Marks)
- 3(a) Expand the function $f(x) = \cos x$ about $x = \frac{\pi}{a}$ using Taylors expansion. (6Marks)
- (b) If $f(x,y) = x^4y + e^{xy^3}$ find $f_x f_y f_{yy} f_{yy}$ (8Marks)
- c) Show that $f_{xy} = f_{yx}$ (6Marks)
- 4 a) Find the directional derivative of $U 2xy z^2 \omega t Q(2,-1,1)$ (9marks) in the direction towards P(3,1,-1).
- b (i) In what direction is Directional derivative a maximum. (2Marks)
- (ii) What is the value of the maximum? (4Marks)
- c) If $f(x, y) = x^2 y^2$ with $x = \cos t$ and $= \sin t$, find $\frac{df}{dt}$ by using partial differentiation

(5Marks)

- 5 a) A rectangular box, open at the top, is to have a volume of 108 cubic feet. What must be the dimensions so that the total surface is a minimum? (7Marks)
- b) Use Lagrange multipliers to find the maximum and minimum values of the function f(x, y) = 3x + 4y subject to the constraint $x^2 + y^2 = 1$ (7Marks)
- c) Evaluate $\int \frac{x^2+2}{x(x^2-9)} dx$ (6Marks)